

Sviluppo di foto-catalizzatori nanostrutturati opportunamente ingegnerizzati: sintesi colloidali di nanocristalli a base di ossidi di Ti e W.

- 1) nanocristalli a singolo materiale con morfologia e composizione controllata,
- 2) architetture ibride costituite da eterostrutture multi-materiale.

Caratterizzazione morfologico-strutturale, composizionale e fotocatalitica dei nanomateriali sviluppati.

Sono stati proposti approcci di sintesi bottom-up per lo sviluppo di fotocatalizzatori che potessero innescare uno tra i possibili processi de-NO_X:

- (A) Selective photocatalytic reduction of NOx to N2
- (B) Photocatalytic oxidation of NOx to HNO3
- (C) Decomposition of NO into N2 + O2

Ottimizzazione della chimica superficiale delle nanoparticelle

- L'ottimizzazione superficiale della TiO₂ per fotocatalisi (Aeroxide®P25, Nanorods AN1, TiO₂-TCT, TiO₂ ITC ottenuti nel corso del progetto) può essere effettuata mediante reazione con ioni fosfato.
- La funzionalizzazione con la prima base coniugata dell'acido fosforico (diidrogenofosfato) risulta in termini di efficacia in fotocatalisi migliore rispetto alla funzionalizzazione con H₃PO₄, soprattutto per quanto concerne l'abbattimento dei NO_x.
- Come supportato dai test di fotocatalisi condotti in acqua in diverse condizioni di pH, i materiali funzionalizzati con ioni fosfato sono meno sensibili alle condizioni di pH, caratteristica particolarmente favorevole per l'impiego di questi materiali in compositi cementizi.
- Il protocollo presenta delle potenzialità in termini di scalabilità.

Ind2 anatase Include Scale up test 100 g 0 % nr 80% funzionalizzata	
TiO2 anatase funzionalizzataTCT-PSu scala 2,5 g.19%nr66%	
TiO2 ITC ITC-P Hombikat AHP_200 sintesi scala n.t. n.t. 77% funzionalizzata 2,5 g	
TiO2 Aeroxide® funzionalizzataTiO2 P25 BFunzionalizzazione con NaH2PO4-81%-87%77%	
TiO2 Aeroxide® funzionalizzataTiO2 P25 AFunzionalizzazione con H3PO4n.t.n.t.62%	
TiO2 NRs anataseTiO2 NRsSintesi idrolitica in presenza di acido oleico.12%.48%76±1%)
TiO2 NRsTiO2 NRsFunzionalizzazione conn.t.n.t.75 %funzionalizzataAN1 $Bu_4NH_2PO_4$	

Tipico spettro IR (KBr) di TiO₂-ITC (traccia nera) e degli stessi campioni a seguito del trattamento con diidrogenofosfato di sodio. E' evidente nel secondo caso una banda in corrispondenza dello stretching P-O a 1050 cm⁻¹ che testimonia la funzionalizzazione del campione.

Risultati dell'esperimento di abbattimento del Methylene Blue (MB) assistita da TiO₂ P25 e TiO₂ P25 modificata con fosfato a pH=6 e a pH=13. Si può notare una minore influenza sull'attività catalitica dell'azione del pH, di interesse per l'impiego in malte cementizie.

Risultati ottenuti nei test di fotocatalisi (test di decolorazione del blu di metilene e test di abbattimento NOx) ottenuti con campioni di TiO2 funzionalizzata in superfice con anioni fosfato.

Ottimizzazione della chimica superficiale delle nanoparticelle

La comprensione della chimica superficiale dei nanorods di titania ottenuti nel corso del progetto e del meccanismo di formazione delle nanoparticelle è essenziale ai fini dell'ottimizzazione della loro attività fotocatalitica. E' stato quindi effettuato uno studio NMR mirato alla caratterizzazione superficiale di AN1.

¹H-NMR (concentrazione 25mg/mL) di sospensioni di NR registrate in C_6D_6 (traccia rossa) e CDCl₃ (traccia verde) in confronto con gli spettri dell'acido oleico puro negli stessi solventi C_6D_6 (traccia nera e CDCl₃ (traccia blu).

Figura: Spettri DOSY della sospensione dei nanorods di AN1 in benzene-d6 (sx) e $CDCl_3$ (dx).

b = 14,7 nm (core inorganico = 27,0 nm, legante organico shell = 2,5 nm) c = 3,0 nm (core inorganico = 3,5 nm, legante organico shell = 2,5 nm) Ricavato da misure TEM. A destra, il modello di ellissoide prolato usato per la modellazione del nanorod.

Valutazione coefficiente di diffusione $D = 3.34 \times 10^{-11} \text{ m}^2 \text{ s}^{-1} \text{ (calcolato)}$ $D = 3.88 \times 10^{-11} \text{ m}^2 \text{ s}^{-1} \text{ (DOSY-sperimentale)}$

- La superfice dei nanorods di titania può essere studiata mediante risonanza magnetica nucleare ¹H-NMR, grazie ai capping agents che li stabilizzano (acido oleico).
- Lo spettro di ¹H-NMR dei NR registrato in C₆D₆ ha evidenziato la presenza di segnali finemente strutturati, pertanto attribuibili a specie organiche (isopropilato di oleile ed etilato di oleile) che non coordinano la superficie del nanocristallo, ma che sono parzialmente fisisorbite ad esso.
- La spettroscopia di diffusione (DOSY) permette di ricavare coefficienti di diffusione in ottimo accordo con le dimensioni delle nanoparticelle.

Sono stati effettuati test fotocatatalitici in accordo alla normativa ISO 10678; 2010 (opportunamente modificata per tener conto delle specificità dei materiali da testare) o con metodologie appositamente messe a punto per gli scopi del progetto. In aggiunta ai test fotocatalitici previsti dal PDA, sono stati effettuati anche test di fotocatalisi in acqua a diversi valori di pH (pH 6 – pH13) al fine di valutare il comportamento dei materiali preparati nel progetto in condizioni di pH fortemente alcaline tipiche delle malte cementizie. Tra i materiali testati i test fotocatalitici hanno messo in evidenza le prestazioni del TiO₂ preparato per sintesi idrolitica (per la sua elevata attvità nell'UV) e le prestazioni dei sistemi accoppiati TiO₂/WO_x sotto illuminazione con luce solare simulata.

WP3 – SCALE-UP

Progettazione e realizzazione di impianti pilota per la sintesi industriale di nanomateriali colloidali per le applicazioni **edilizia** e **automotive**

WP3 – SCALE-UP

Raffronto dei costi di produzione di 1 kg di TiO2

Fotocatalizzatore(%)/Legante	Methyl Hydroxyethyl Cellulose (%)/Legante	AF% in continuo UV	AF% in continuo Vis	
		outdoor	indoor	
	0	21,3	2,5	
TCT1 1%	0,1%	22,7	4,9	
	0,2%	23,8	6,5	
	0	21,5	4,3	
TCT1 2%	0,1%	25,1	5,6	
	0,2%	26	9,4	
	0	21,6	6,2	
TCT1 3%	0,1%	21,5	6,6	
	0,2%	23,6	9,4	

Indici di abbattimento fotocatalitico Ac UV/Vis in malta std dei fotocatalizzatori forniti da TCT

Compiono Entocatolizzatoro(%)/Loganto			Af % UV	Af % Vis
Campione	Fotocatalizzatore(%)/Legante	Potocatalizzatore(%)/formulato	Outdoor	Indoor
AHP200-15	15%	3,75%	28,5	12
AHP200-30	30%	7,5%	31,7	16,7
TCT1-15	15%	3,75%	25,7	10,8
TCT1-30	30%	7,5%	26,1	21,1
TCT2-15	15%	3,75%	23,4	17,6
TCT2-30	30%	7,5%	31,1	18,5

Indici di abbattimento fotocatalitico Ac UV/Vis delle formulazioni ITC in Malta Std.

Generalization	Descriptions	E-44-li4-m	% di Fotocatalizzatore nel	% di Fotocatalizzatore nel	Af % UV	Af % Vis
Campione	Descrizione	Fotocatalizzatore	Legante formulato		Outdoor	Indoor
133 - 16	Siras 21 - SPUGNATO	AHP200	Cemento TXActive	/	11,9	3,3
220 - 16	Siras 21 - SPUGNATO	/	0	0	3,2	0,7
303 - 16	Hardtec - SPUGNATO	Kronos VLP700	18	2	13,9	3,2
388 - 16	Siras 21 - SPUGNATO	TCT1	18	2	10,0	3,2
389 - 16	Siras 21 - LISCIATO	TCT1	18	2	13,0	3,0
49 - 17	Siras 21 - LISCIATO	TCT1	18	2	16,0	11,8
129 - 17	Siras 21 - SPUGNATO	TCT1	36	4	20,4	20,5
130 - 17	Hardtec - LISCIATO	TCT1	5	2	12,3	7,3
131 - 17	Hardtec - LISCIATO	TCT1	10	4	14,8	11,9
132 - 17	Hardtec – COLORATO LISCIATO	TCT1	10	4	11,6	2,8
153-A-17	Siras 21 - LISCIATO	TCT1 + cellulosa 0,2%	18	2	20,8	5,3
153-B-17	Siras 21 - SATINATO	TCT1 + cellulosa 0,2%	18	2	20,7	3,7
188-17	Hardtec - LISCIATO	P25	2	1	18,9	3,1
191-17	Siras 21 - SPUGNATO	P25	36	4	24,8	19,5
192-17	Siras 21 - SPUGNATO	P25	4	0,4	23,3	3,1
193-17	Siras 21 - SPUGNATO	TCT2	36	4	21,2	19,1
194-17	Siras 21 - SPUGNATO	TCT2	4	0,4	19,9	3,2
235-17	Siras 21 - SPUGNATO	AHP200	36	4	20,3	8,8
248-17	Microtec - SPUGNATO	TCT2	24	4	14,0	5,0
253-17	COAT H35 Italcementi - SPUGNATO	AHP200	Cemento TXActive	/	25,3	5,3

Indici di abbattimento fotocatalitico Ac UV/Vis

dei prodotti SIPRE

Sistema di misura indice di abbattimento fotocatalitico (Ac%) c/o ITC

- test ISO
- elevate quantità di materiale (g)
- polveri

Sistema di misura indice di abbattimento Fotocatalitico (Ac%)

Campioni SIPRE

Campioni fotocatalizzatore in polvere

Campioni in malta std ITC

PRIMA

DOPO

Dimostratore macchiato con colorante (RodaminaB) prima e dopo irraggiamento UV (10W/m2 x 24 ore secondo UNI 11259)

NANOAPULIA : prodotti testati nell' OR6.1 REV : 30.09.17									
	Denominazione	Descrizione							
LEGANTI NON ATTIVI	i.design ITALBIANCO 52.5 R	Legante commerciale ITC 52,5 r							
COMMERCIALI	i.design ROCCABIANCA 42.5 R	Legante commerciale ITC 42,5							
	Cem I 52,5 R	Legante commerciale colacem 52,5							
LEGANTI ATTIVI	i.active tecno bianco 42.5 R	Legante fotocatalitico commerciale ITC 42,5							
COMMERCIALI	i.active ultra 52.5 R	Legante fotocatalitico commerciale ITC 52,5							
	Siras 21	Rasante commerciale non attivo Sipre							
Malta commerciali	Hardtec	Corazante commerciale non attivo Sipre							
non attive	Sidur	Spolvero commerciale non attivo Sipre							
	Microtec Base	Base microcemento commerciale non attiva Sipre							
Malte	Coat h35	Rsante fotocatalitico commerciale ITC							
commerciali attive	Coat 670	Rasante fotocatalitico commerciale ITC							
	Sidur TX	Spolvero fotocatalitico commerciale Sipre							
Additivi	P25	Diossido di Titanio commerciale Evonik							
commerciali	AHP200	Diossido di Titanio							

1.

3.

4.

Fasi di lavoro:

- Screening prodotti commerciali fotocatalitici e selezione di quelli da testare;
- 2. Verifica delle prestazioni attese;
 - Additivazione dei prodotti con TiO2 commerciali a dosaggi del 2-3%;
 - Valutazione dell'incidenza del TiO2 sulle performances meccaniche e applicative.

Il TiO2 non influisce sulla resistenza a compressione con dosaggi del 2-3%, né sui leganti né sulle malte.

Componenti fotocatalitici utilizzati			Malte fotocal	alitiche realizzate
	Denominazione	Descrizione	wate folocal	
	R1I	Legante ITC bianco con TiO2 al 1%r	Prodotti	Denominazione
	R218	rLegante ITC bianco con TiO2 al 2%r		
LEGANTI INNOVATIVI ITC	TCT 2%	Legante fotocatalitico con 2% TiO2	RASANTI	SIRAS21
	02ITC	Legante fotocatalitico ITC 52,5	CORAZZANTI	Hardtec 1500
	ITB TCT 2	Legante fotocatalitico ITC con 30% di TiO2 TCT		
	Nanotech TiO2 TCT		Spolveri	Sidur
Additivi	P25	Additivazioni del 2 – 4 – 10 – 30% sul legante commerciale non attivo	Applicationi per	
	AHP200		microcemento	Base Microtec

L'aggiunta di TiO2 all'interno del legante comporta un incremento della finezza ed una diminuzione della lavorabilità

C
<u>+</u>
m
1
T
0
0
Ľ
5
3
1
>
.
+
^(D)
Ψ
_
_
0
Ð
~
0
N.
N
σ
-
5
-
C
-

he

	Sintesi Risultati Fotocatalisi												
Compiono	: Tipologia di Tipologia di prodotto legante	% di legante	Tinologia	Malta pro leganti già a Tio	odotta con dditivati con O2	Malta prodotta con additivazione diretta di TiO2		Tino di			Risultati fotocatalitici		
Realizzato		legante	nel prodotto	TiO2	% di TiO2 nel legante	% di TiO2 nel prodotto	% di TiO2 nel legante	% di TiO2 nel prodotto	prova	Supporto	Finitura	UV	VIS
133/16	Siras21	i. Active 52,5	11%				-	-	Piastra cls 40x40	Intonaco	Spugnato	11,9	3,3
220/16	Siras21	Cem 52,5 B	11%				-	_	Piastra cls 40x40	Intonaco	Spugnato	3,2	0,7
303/16	Hardtec	R2I	42%	Kronos VLP700	2%	0,84	-	_	Piastra cls 40x40	Cls	Spugnato	13,9	3,2
388/16	Siras 21	Legante ITC con TCT 2%	11%	TCT 1	2%	0,2	-	_	Piastra cls 40x40	Intonaco	Spugnato	10	3,2
389/16	Siras21	Legante ITC con TCT 2%	11%	TCT 1	2	0,2	-	_	Piastra cls 40x40	Intonaco	Lisciato	13	3
49/17	Siras21	Cem 52,5 B	11%	TCT1			18	2	Piastra cls 40x40	Cls	Spugnato	16	11,75
129/17	Siras21	Cem 52,5 B	11%	TCT1			36	4	Piastra cls 40x40	Cls	Spugnato	20,4	20,5
130/17	Hardtec	Cem 52,5 B	42%	TCT1			5	2	Piastra cls 40x40	Cls	Lisciato	12,3	7,3
131/17	Hardtec	Cem 52,5 B	42%	TCT1			10	4	Piastra cls 40x40	Cls	Lisciato	14,8	11,9
132/17	Hardtec	Cem 52,5 B	42%	TCT1			10	4	Piastra cls 40x40	Cls	Lisciato	11,6	2,8

Ο

<u> </u>
()
^o
<u> </u>
U
()
0
1
0
<u> </u>
-
÷
-
T
10
()
-
4
U
70
D
0
0
1.000
N
σ
L.
-
-
3

	Sintesi Risultati Fotocatalisi												
Campiono	Tinologia di	ringlasia di Tinglasia di % di le		Tipologia	Malta prodotta con leganti già additivati con TiO2		Malta prodotta con additivazione diretta di TiO2					Risultati fotocatalitici	
Realizzato	prodotto legante	legante	nel prodotto	TiO2	% di TiO2 nel legante	% di TiO2 nel prodotto	% di TiO2 nel legante	% di TiO2 nel prodotto	prova	Supporto	Finitura	υv	VIS
153/A	Siras21	02 ITC	11%	TCT1	2	0,2	-	-	Piastra cls 40x40	Cls	Lisciato	20,8	5,3
153/B	Siras21	02 ITC	11%	TCT1	2	0,2	-	_	Piastra cls 40x40	Cls	Spugnato	20,7	3,7*
188/17	Hardtec	Cem 52,5	42%	P25			2	1	Piastra cls 40x40	Cls	Lisciato	18,9	3,1
191/17	Siras 21	Cem 52,5	11%	P25			36	4	Piastra cls 40x40	Cls	Spugnato	24,8	19,5
192/17	Siras 21	Cem 52,5	11%	P25			4	0,4	Piastra cls 40x40	Cls	Spugnato	23,3	3,1
193/17	Siras 21	Cem 52,5	11%	TCT1			36	4	Piastra cls 40x40	Cls	Spugnato	21,2*	19,1
194/17	Siras 21	Cem 52,5	11%	TCT1			4	0,4	Piastra cls 40x40	Cls	Spugnato	19,9	3,2
235/17	Siras 21	Cem 52,5 B ITC	11%	AHP200			36	4	Piastra cls 40x40	Cls	Spugnato	20,3*	8,8*
248/17	Microtec base	Cem 52,5 B ITC	17%	TCT1			24	4	Piastra cls 40x40	Cls	Spugnato	14	5,0*
253/17	Coat h35	?		?			?	?	Piastra cls 40x40	Cls	Spugnato	25,3*	5,3*

Risultati Fotocatalitici – Siras21

- L'aumento del dosaggio di TiO2 ha effetti sull'attività fotocatalitica;
- I dosaggi di TiO2 ottimizzati, per le diverse formulazioni, sono stati riscontrati per valori al 30% sul peso del legante

TEST DI CANTIERE

Tipologia	Applicazione	Consumo	% di Legante nel Prodotto	% di TiO2 sul legante	% di TiO2 sul Prodotto	TiO2 per M.Q.	Costo TiO2 per M.Q.
		kg/M.Q.		, , , , , , , , , , , , , , , , , , ,		gr/M.Q.	€/M.Q.
Corazzante	Orizzontale	4	50%	20%	10%	400	20
Rasante	Verticale	1,5	10%	20%	2%	30	1,5
Microcemento	Orizz. /Verticale	0,3	15%	20%	3%	9	0,45

Codici IPC6 del C04B - Ossidazione Fotocatalitica in Materiali per Edilizia (2005-2015)

Assignee	Publication Number	Title	Publication Date	IPC (all)	Legal Status	Expiration Date
Italcementi	CA2694262C	COATINGS BASED ON HYDRAULIC BINDERS WITH AN OPTIMAL RHEOLOGY AND A HIGH PHOTOCATALYTIC ACTIVITY	2016-08-16	C04B 22/04 C04B 28/00	🕤 Alive	2028-07-24
Italcementi	EP1944279A3	Use of photocatalytic preparations of colloidal titanium dioxide for preserving the original appearance of cementitious, stone, or marble products	2008-09-10	C04B 41/50 C01G 23/047 C01G 23/053 C04B 41/65	🚱 Dead	-
Global Engineering	US20070017417 A1	Bituminous road surface with a photocatalytic effect and procedure for the preparation of said road surface	2007-01-25	C04B 28/26	() Indeterminate	() Indeterminate
Global Engineering	EP1878711A1	Cementitious surface coating with photocatalytic activity	2008-01-16	C04B 14/30 C04B 28/02	🙆 Dead	-
Steag gmbh	IN201401255P3	CONSTRUCTION MATERIAL MIXTURE A METHOD FOR PRODUCING SAME AND USE THEREOF	2015-03-13	C04B 14/30 C04B 28/04	() Indeterminate	() Indeterminate
Cementa AB	CA2687507C	A PHOTOCATALYTICALLY ACTIVE COMPOSITION AND A METHOD FOR PREPARATION THEREOF	2016-10-04	B01J 21/06 B01J 27/055 B01J	S Alive	2028-05-20

Formulate malte fotocatalitiche nell'UV e nel visibile, sia mediante utilizzo di leganti fotocatalitici che con aggiunta diretta di TiO2

Formulati, testati ed applicati tre prodotti:

- Siras 21, rasante per applicazioni verticali
- Corazzante per applicazioni orizzontali
- Microcemento per applicazioni orizzontali e verticali
- Ottimizzati i dosaggi di TiO2 modificati, in % dal 25 al 36% sul peso del legante
- Mantenute o migliorate le prestazioni fisico-meccaniche rispetto ai prodotti equivalenti non dotati di attività fotocatalitica

WP9 – TECNICHE DI DEPOSIZIONE PER REATTORI FOTOCATALITICI

WP9 – TECNICHE DI DEPOSIZIONE PER REATTORI FOTOCATALITICI

La metodologia di deposizione messa a punto da CNR-IPCF si è dimostrata efficace, riproducibile, facilmente scalabile e non necessita di solventi cancerogeni né di elevate temperature. La procedura è potenzialmente applicabile ad altri (nano)materiali posto che possano essere sospesi per un tempo sufficientemente lungo in solventi con opportuna tensione di vapore. Inoltre, la procedura è applicabile a superfici di varia geometria e composizione chimica. Infine la procedura permette di contenere i costi di produzione permettendo il riutilizzo della sospensione di nanoparticelle per più cicli di deposizione.

Attraverso tecniche avanzate nel rilievo dal reale di superfici 3D si è ottenuta la geometria del catalizzatore utilizzata per le simulazioni CFD.

Si è proceduto inoltre, a rilevare l'intera linea di scarico con tecniche innovative.

Attraverso tecniche avanzate di reverse engineering è stato possibile rilevare le volumetrie delle sottoscocca

Si è proceduto con la validazione di un meccanismo chimico di ossidazione dei NOx.

Successivamente, si è applicata tale modellazione al catalizzatore automotive.

Si sono quindi effettuate simulazioni accoppiando, alla cinetica chimica, la risoluzione del campo radiativo.

Processo	Reazione		
Generazione dei portatori di carica	$TiO_2 + hv \rightarrow TiO_2(h^++e^-)$		
Ricombinazione dei portatori di carica	$TiO_2(h^++e^-) \rightarrow TiO_2 + calore$		
Cattura dei portatori di carica	$\begin{split} TiO_2(h^+) + H_2O_{ads} &\rightarrow TiO_2 + OH^{\bullet} + H^+ \\ TiO_2(h^+) + H_2O_{ads} &\rightarrow TiO_2 + OH^{\bullet} \\ TiO_2(h^+) + O_{2ads} &\rightarrow TiO_2 + O_2^{\bullet} \end{split}$		
Ossidazione da radicali ossidrilici	$\begin{split} NO_{ads} + OH^\bullet &\to HNO_{2ads} \\ HNO_{2ads} + OH^\bullet &\to NO_{2ads} + H_2O \\ NO_{2ads} + OH^\bullet &\to HNO_{3ads} &\longleftrightarrow NO^\bullet_{3ads} + H_2O \\ \end{split}$		

Scelto un meccanismo di foto-ossidazione adeguato a rappresentare l'abbattimento di NOx prodotti da motori Diesel, si sono realizzate simulazioni di un condotto del fotocatalizzatore realizzato nell'ambito di questo progetto, a seguito di un opportuno processo di validazione.

WP1 – SPECIFICHE REATTORE

- Temperatura massima di esercizio: T < 150 °C Criticità: lampade UV
- Portata massima gas di scarico: M < 100 Kg/h Criticità #1: tempo di attraversamento ridotto per portate superiori Criticità #2: abrasione coating foto-catalitico dovuto agli alti flussi
- Sostanze inquinanti: basse concentrazioni di HC, CO e particolato Criticità #1: Riduzione prestazioni catalitiche del TiO₂ inquinato da HC e CO Criticità #2: Riduzione delle prestazioni per deposizione particolato su coating catalitico

WP8 – PROGETTAZIONE REATTORE FOTOCATALITICO

Sulla base delle specifiche tecniche definite nel WP1 si è proceduto alla progettazione del prototipo:

- **Dimensioni massime di ingombro:** D = 420 mm , L = 1074 mm
- Fonte luminosa UV: 150 Lampade CCFL, coassiali a ciascun canale con supporto in Teflon

- Tensione di accensione: 900 V
- Corrente di esercizio: 5 mA
- Intensità UV: 4 mW/cm²
- Lunghezza d'onda: 254 nm

WP8 – REALIZZAZIONE REATTORE FOTOCATALITICO

Il reattore è realizzato in acciaio inox AISI 304 ed è composto da:

- condotto ingresso/uscita gas di scarico
- N.4 piastre passacavi con connettori
- N.2 condotti intermedi
- corpo centrale con 150 condotti con deposito in TiO₂ e lampade UV

Lampada TGC30-20001 della Miyakawa Corp. Con annesso inverter di alimentazione.

Si alimenta ciascuna lampada con un singolo inverter; il tutto è stato raccolto in un quadro elettrico di alimentazione. Il quadro, dotato di protezione magnetotermica, dispone di 5 alimentatori 230V AC/24V DC da 10A ciascuno. I cavi utilizzati per il cablaggio sono unipolari, adatti fino a temperature di 700°C e tensioni di 1000V.

WP10 – COLLAUDO REATTORE SU BANCO MOTORE

Il prototipo di reattore realizzato è stato allestito e testato al banco prova motore disponibile presso i laboratori CVIT.

Configurazione motore	3 cilindri in linea		
Sistema di combustione	Sistema di iniezione diretta		
Legislazione emissioni	EU6		
Cilindrata [cm ³]	1496		
Rapporto di	16 5 + 1		
compressione	10,5 ± 1		
Potenza nominale [kW]	85 kW @000 rpm		
Coppia massima [Nm]	270 @1750 rpm		

L'allestimento del motore consiste nel dotarlo di tutti i sensori di pressione, temperatura, prelievi gas per analisi, misure in centralina, realizzando una configurazione molto simile al veicolo.

WP10 – COLLAUDO REATTORE SU BANCO MOTORE

La linea di aspirazione viene realizzata usando i componenti originali del veicolo ed è collegata al sistema di aspirazione di cella.

La funzione svolta nel veicolo dal radiatore è a carico di uno scambiatore di calore acqua/acqua collegato agli impianti di cella e consente il raffreddamento dell'acqua motore.

Un secondo intercooler atto ad abbattere la temperatura dei gas di scarico prima che entrino nel fotocatalizzatore ricalca le caratteristiche dell'intercooler in uscita compressore.

La linea di scarico viene dotata di una valvola a farfalla per simulare la contropressione dovuta alla presenza del silenziatore.

WP10 – COLLAUDO REATTORE SU BANCO MOTORE

Le prove sono state effettuate in condizioni stazionarie utilizzando come sistema di misura delle emissioni il banco analisi Horiba a disposizione nella cella prova motore:

ld Prova	Temp. Ingresso Gas	MassFlow	NOx Pre- FotoCatalyst	NOx Post- FotoCatalyst	Efficienza Conversione NOx
[-]	[°C]	[Kg/h]	[ppm]	[ppm]	[%]
#1	25	57	360.3	301.3	16.38
#2	35	56	419.5	374.7	10.68
#3	34	57.5	471	402.6	14.52
#4	35	59	707.9	575.4	18.72
#5	44	58	817.8	724	11.47
#6	41	60.5	1135.1	970.9	14.47
#7	34	62	413.8	383.3	7.37
#8	39	64	695.2	642.9	7.52
#9	46	64.6	197.2	189.4	3.96
#10	38.6	75	727.1	668.2	8.10
#11	45	89	164	156.2	4.76
#12	29	89	165.6	154.1	6.94

L'ottimizzazione degli spazi, un progetto approfondito e la ricerca scrupolosa dei materiali hanno permesso di raggiungere efficienze di conversione prossime al 20%.

Ciò rappresenta un sostanziale miglioramento delle prestazioni del reattore; il precedente prototipo, sviluppato durante il progetto PON01_01419, presentava un abbattimento dei NO_x non superiore al 4% per i punti operativi investigati.

Come prossimi step si propone lo studio delle prestazioni con l'aging del reattore in modo da valutarne il decadimento con l'esposizione ai flussi gassosi.

- 1. <u>Realizzazione di Set-up sperimentali</u>: Tra i setup sperimentali riportati in letteratura per lo studio di mezzi di contrasto ecografici nanostrutturati sono stati identificati quelli più idonei ad essere «adattati» per la caratterizzazione di nanomateriali su un substrato solido.
- 2. <u>Esecuzione delle misure e definizione dei protocolli per applicazioni in ambito AUTOMOTIVE:</u> facendo uso di un apposito «sample holder» che consentisse di effettuare misure ripetibili su campioni semi-cilindrici e di un sistema di schede elettroniche dedicato per il pilotaggio di sonde ultrasoniche monotraccia, è stato definito un nuovo protocollo di misura sperimentale basato sulla misura dell'ampiezza dei segnali ultrasonici riflessi.
- 3. <u>Esecuzione delle misure e definizione dei protocolli per applicazioni in ambito EDILIZIA:</u> è stata progressivamente studiata e messa a punto una particolare configurazione del metodo «RULES», tipicamente utilizzato in ambito biomedico per la caratterizzazione dei tessuti biologici. Tale approccio prevede l'utilizzo di una sonda ecografica e l'analisi dei segnali ultrasonici «grezzi» (a radiofrequenza) attraverso algoritmi avanzati basati sull'uso delle trasformate Wavelet.

PREPARAZIONE CAMPIONI (vetrini, semi-tubi metallici, malte)

SELEZIONE SONDE (ecografiche, monotraccia, a diversa frequenza)

SISTEMI DI ACQUISIZIONE DATI (statici, motorizzati)

Sample holder apposito e sistema di pilotaggio sonde ultrasoniche

L'ampiezza del segnale riflesso in presenza di nanoparticelle è significativamente inferiore a quella misurata in assenza di nanoparticelle.

Acquisizioni ecografiche ed analisi segnali RF con metodo «RULES»

I campioni contenenti i nanofotocatalizzatori tendono ad essere colorati di rosso in maniera più evidente rispetto alla pura malta.

- 1. Selezione di linee cellulari idonee per lo svolgimento dei test di citotossicità;
- 2. Verifica della tossicità in vitro delle nanoparticelle TiO₂ Aeroxide® P25 in sospensione tramite test metabolici e biochimici:
- <u>Test MTT</u>
- <u>Misura della produzione di specie reattive dell'ossigeno (ROS)</u>
- Dosaggio dell'attività della Caspasi-3 (apoptosi)
- Dosaggio dell'attività della Lattico Deidrogenasi (necrosi)
- 3. verifica delle eventuali variazioni della tossicità dovute all'adesione delle nanoparticelle TiO₂ Aeroxide® P25 su matrice solida

- 1. Selezione di linee cellulari idonee per lo svolgimento dei test di citotossicità;
- allestimento di colture di diverse linee cellulari e caratterizzazione delle rispettive curve di crescita,
- risposta delle linee cellulari selezionate a composti chimici di tossicità nota.

Dopo uno screening iniziale, sono state selezionate due linee cellulari <u>diverse per derivazione embriologica</u> ma con <u>simili</u> <u>caratteristiche proliferative</u>.

SKOV-3: carcinoma ovarico; MG-63: osteosarcoma.

Al fine di verificare la sensibilità alla tossicità chimica delle linee cellulari selezionate si sono condotti, come controllo positivo, esperimenti di "viability assay" tramite test MTT dopo trattamento delle cellule con un nanoparticolato di tossicità accertata costituito da nanotubi di alluminosilicato (HNT).

Verifica della tossicità in vitro delle nanoparticelle TiO₂ Aeroxide® P25 in sospensione tramite test metabolici e biochimici

- I risultati degli esperimenti di tossicità in vitro effettuati tramite test metabolico MTT indicano che, nelle condizioni sperimentali utilizzate, le nanoparticelle di biossido di titanio non esibiscono fenomeni di tossicità in quanto causano una solo modesta riduzione della vitalità cellulare (~10-15%), ben al di sotto del valore soglia del 30% fissato dalla norma ISO 10993-5;
- tali risultati sono stati pienamente confermati anche dai risultati dei test biochimici a più elevata specificità quali il dosaggio della produzione di ROS, dell'attività della Caspasi-3 e della Lattico Deidrogenasi.

Verifica delle eventuali variazioni della tossicità dovute all'adesione delle nanoparticelle TiO₂ Aeroxide® P25 su matrice solida

Le immagini al microscopio ottico mostrano che, almeno da un punto di vista qualitativo, la proliferazione delle cellule coltivate su vetrino copri-oggetto trasparente e ricoperto di nanoparticelle è sovrapponibile, suggerendo che l'adesione del nanomateriale alla matrice solida non ne modifica le caratteristiche di tossicità

Utilizzabilità dei risultati e brevetti

- I protocolli di sintesi di CNP sviluppati dagli OdR su scala da laboratorio sono già stati trasferiti nella linea di produzione di TCT.
- I materiali prodotti da TCT su scala pilota sono già stati trasferiti a ICT e a SIPRE ed è in corso di discussione il deposito di una o più domande di brevetto che possano rivendicare nuovi prodotti per edilizia ad elevata attività fotocatalitica anche nel visibile.
- I protocolli di deposizione ed i risultati delle attività modellistiche ottenuti dagli OdR sono già stati efficacemente trasferiti a CVIT che sta valutando l'opportunità di dare seguito alle attività NANOAPULIA in seno ad ulteriori progetti.

Mercato e ricadute industriali

Il progetto NANOAPULIA ha, a tutti gli effetti, sviluppato un'intera filiera industriale che comprende, a monte, TCT e, a valle, SIPRE e ITC per le applicazioni in edilizia. Il mercato di riferimento è sostanzialmente nuovo poiché i nuovi prodotti per edilizia sono dedicati ad applicazioni indoor, fino ad oggi non servite da alcun prodotto concorrente. Il know-how generato non verrà trasferito a terzi, ma sfruttato direttamente dai partner del progetto. Verosimilmente, l'immissione sul mercato dei nuovi prodotti genererà un'interessante ricaduta occupazionale, con particolare riferimento a TCT e SIPRE.

Scenari Applicativi

Le tecnologie sviluppate in seno al progetto consentiranno di generare nuovi prodotti per edilizia, con particolare riferimento a malte e rasanti per applicazioni verticali e orizzontali indoor. Benchè i risultati in ambito automotive siano stati senza dubbio assai rilevanti, l'applicazione delle tecnologie NANOAPULIA richiederà ulteriori investimenti per un effettivo utilizzo su veicolo.

Le applicazioni dei risultati conseguiti da ECHOLIGHT sono in fase di valutazione.